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Reconciliation of frequentist and Bayesian approaches to elementary 
treatment of data in nuclear and particle physics is attempted. Unique 
procedure to express the significance of a small count in presence of 
background is henceforth proposed and discussed in some detail.   

 
 
 

1. INTRODUCTION 
 
 It has been for more than fifty years now that nuclear and particle physicists worry about 
the unique way of expressing the significance of their conclusions which rely on small number of 
registered events of given signature, and especially so when some of these events are suspected 
to be of origin different than the one of current interest. This worry has in recent years eventually 
grown into a nightmare (hence the title of this paper), for new physics beyond Standard models 
is, if at all, necessarily represented by only a small signal immersed in the high background of the 
prevailing phenomena already embraced by the Standard models. From the early days of Regener 
(1951) [1], till PhyStat2003 [2], the physicists were exploring the rich heritage of the 
mathematicians in search of the final solution to the problem. Distressingly diversified body of 
literature on the subject has henceforth emerged, while great number of recent workshops and 
conferences devoted partly to this matter [3,4,5,6,7] speaks of the annoying situation. The results 
of all these efforts are accessible via the links found at the CDF Statistics Committee site [8]. 
Particle Data Group also recommends a number of possible approaches [9]. 
 
 It is not our wish here to enter the endless dispute between the frequentists and the 
Bayesians about the fundamentals of probability theory. Our aim is a modest one; we shall at best 
try to give a somewhat different interpretation to common situations with counting statistics only 
(though Barlow emphasized that "everything is a counting experiment" [10]), including the 
important case when some phenomena other than the one under scrutiny are suspected to 
contribute to the overall number of indistinguishable counts. We shall reinterpret the key 
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distribution function which occurs in both the frequentist and Bayesian approach to counting 
statistics and will hopefully be able to reconcile the two opposed views, at least when applied to 
elementary problems of counting statistics, and perhaps make everyday life easier for a practicing 
nuclear and particle physicist, as well as contribute to more homogeneous presentation of our 
results.  
 
 

2. THE CASE OF A BACKGROUNDLESS COUNT – the one-parameter problem 
 
 Most of what follows is, of course, deja vu. We start with considering the inferences 
which we are allowed to make in the simplest of cases, when we have, in a given measurement 
time, counted a certain number of events of given signature, and when we either do not care 
about their origin or are 100% sure that they are all of the same origin, and when we believe that 
they satisfy the conditions required for their distribution to be Poissonian.  
 
2.a. Our knowledge of the average count after a single (small) count has been observed 
 
 Consider first the case when we have counted nothing, what is, of course, how every 
experiment begins (and some even end). Let us recall that this eventless interval is exponentially 
distributed, and that on the average it lasts longer when the average counting rate is lower. If we 
assume that the process is Poissonian, such that the true, but prior to the experiment completely 
unknown average count in measurement time τ is N (or the average counting rate R is N/τ), the 
(conditional) probability to obtain n counts in this measurement time is by assumption  
 

P(nN) = !/ ne NN n − .    (1) 
 
According to the frequentist interpretation the probability of the zero count, if the average count 
was N, thus must have been P(0N) = e−N, and upon actually obtaining the zero count this 
distribution becomes all that we know about N without further elaboration (we shall not consider 
here neither the alternative construction approach of Neyman, nor the so called unified approach, 
which are not easily compared with the Bayesian). We thus accept that, granting our initial 
assumptions were correct, this function represents the total information content of our result. 
 

In the usual frequentist approach this function is obtained by thinking of the Poisson 
distribution (after the experiment has been performed, i.e. a single sample of it obtained) as being 
a function of N (instead of n), and is called the likelihood function, the name being justified by 
the obvious conclusion that now we know that it is more likely for the average count to be close 
to zero than to have some higher value. The term “likelihood” is used instead of “probability” to 
reflect the fact that N is not a stochastic variable, but is a parameter of the distribution which has 
a definite value, though at this instance not known to us exactly. This function is used for 
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parameter estimation in the form of the so-called maximum likelihood method in the manner 
similar to the one we shall be using here. To the Bayesians this function is known as the posterior 
pdf, and is obtained by applying the Bayes’ theorem to the Poissonian likelihood function (which 
by every criterion conforms to the frequentist definition of a pdf, and also note that the term 
“likelihood” now refers to a different function, what only adds to the confusion) which must be 
multiplied by an arbitrary constant, which is termed the uniform prior, and reflects our prior 
ignorance about the probability to obtain the zero count. Here then, this function is considered as 
a genuine probability distribution, minding that the Bayesian probability is, contrary to the 
frequentist probability which is meaningful for stochastic variables only, defined as a “degree of 
belief” that anything under consideration might have a certain value. The Bayesians thus find 
appropriate to integrate their posterior pdf (which is in this case formally identical to the 
frequentist likelihood) in order to obtain the probability (which is again a degree of belief) for the 
unknown parameter, the average count N, to be in a certain interval, what is the procedure to 
which the frequentists strongly object due to the non-stochastic character of N. The two parties 
therefore deal with formally the same function, but in two conceptually different ways. Formal 
identity of the two functions is of course well known. We just consider this to be more than a 
mere coincidence. If the two approaches did not have any crossing points we would be forced to 
conclude that one of them is altogether wrong, for two completely disparate views of the same 
thing cannot both be right (what is an occasionally overlooked truism). 

  
Now that we have reviewed the basics of the two confronted views in this simplest of 

cases, we may try to bring them closer together by ascribing a slightly different meaning to the 
frequentist likelihood function, along the lines suggested in our introduction to the problem. We 
thus imply that it is our knowledge of the true average count that is specified by the above 
distribution. If we denote the degree of our knowledge of N in the light of the measured count n 
by K(N|n) then in the case of zero recorded counts dK=K(N|0)dN=e−NdN. We thus imply that this 
function is meaningful to integrate, in order to quantify our current knowledge about the 
average count being in a certain interval (as it is in the Bayesian tradition, where it is 
interpreted as a pdf, but in the Bayesian sense of probability, the “degree of belief” then 
corresponding to our “knowledge”). For these purposes the function even need not be 
normalized. Our knowledge about the average count is in this situation thus concentrated around 
zero; we are 90% convinced that the average count is smaller than 2.3: 
 

     �
3.2

0
K(N|0)dN = 0.9 ;    (2) 

 
we are only 10% convinced that it is greater than 2.3, etc., and, quite uselessly, we know for sure 
(what corresponds to the norm of the function) that the average count has a certain value between 
zero and infinity. Since the two parties interpret (and name) this function differently, and since 
we suggest that in both approaches it actually represents our current knowledge of the true 
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average count in the light of the available data, to stress that in our view this function is neither 
the probability distribution of average counts N, nor the likelihood function in the frequentist 
sense ("likelihood", according to the consulted dictionaries (Webster, Oxford, etc.) is anyway 
only an alternative word for probability, or probability in disguise) from now on we call it the 
"knowledge density function", or "kdf" for short. The interval within which given percentage of 
our conviction about the value of the average count resides, we shall, in good frequentist 
tradition, still call the confidence interval and the confidence level (CL) respectively. The degree 
of arbitrariness as to how to position the confidence interval, at a given confidence level, 
remains. This is still a matter of convention. It is perhaps only plausible to always choose the 
narrowest one at a given CL, which necessarily contains the maximum of the kdf. 
 
(A comment is perhaps appropriate here. If we were to prolong the measurement, and if we were 
still left with the null result, the kdf of the average count will remain the same, but our 
knowledge of the average counting rate (which is always our final objective) will improve. For a 
non-zero result repetition of identical measurements is good for control purposes, but is in every 
other respect identical to a single measurement performed during the same overall measurement 
time.) 
 
For an arbitrary recorded count n, the kdf is  
 

K(N|n) = !/ ne NN n − .     (3) 
 
This is the Gamma distribution, which, together with our knowledge of N, peaks at n, and has 
both the dispersion and the mean (which is of no consequence here) equal to n+1 (loosely, this 
Poissonian kdf we also call the inverse Poissonian). For any non-zero n it correctly vanishes at 
zero, since once any non-zero count is obtained we know for sure that the average count cannot 
be zero. Also, what is usually disregarded, this kdf is at the same time the probability density 
function of time intervals (since N=τR) between (n+1) scaled counts. This is good, for it allows 
the treatment of the results of preset time and preset count measurements on equal footing.  
 
 There are now two possibilities to analyze this kdf in order to express the degree of our 
current knowledge of the average count. We may either integrate it in order to quantify our 
knowledge about the average count being in a given interval, or alternatively, we can make use of 
the approach adopted by the maximum likelihood method, which analyzes the logarithm of a kdf 
rather than the kdf itself. Integrating the kdf is straightforward, while the analysis of ln(kdf) calls 
for some comments. Our knowledge of the previously unknown parameter is concentrated 
around the maximum of both the kdf and ln(kdf), and sharpness of both functions determines the 
size of the confidence intervals for the parameter. The choice of the logarithm of the kdf, instead 
of the kdf itself, is motivated mostly by the ease with which the limits of confidence intervals are 
derived in this case. As it turns out (and is seen clearly when the kdf is normal, or is 
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approximated by the second term of Taylor expansion around the maximum) the limits of 
confidence intervals at confidence levels which correspond to those of s standard deviations for 
the normal distribution, are determined by the intersections of the lines of equal lnK-values 
which are obtained when s2/2 is subtracted from the value of the ln(kdf) in its maximum, lnKmax. 
Thus, the 1σ interval, or the confidence interval at the 68% confidence level, is the one which is 
enclosed between the intersection points of the ln(kdf) curve with the iso-lnK line which is 
obtained when 0.5 is subtracted from lnKmax , the 2σ, or the 95.4% confidence level interval, is 
the one within the intersections of the iso-lnK line which is by 2 lower than the maximum, for the 
3σ level it is 4.5, we are 90% convinced that the true average count is enclosed within the 
intersections with the iso-lnK line which is 1.35 lower than the maximum lnK value (s=1.64), 
etc.  
 
To illustrate how the two possibilities operate let us have a closer look at the n=3 case. In Fig.1a 
the kdf K(N,n=3) as given by Eq.(3) is presented, while Fig.1b presents the lnK(N,n=3) function. 
In Fig.1b the lnKmax−s2/2 lines together with their intersections with the lnK function are marked, 
and in Fig.1a the corresponding points bear the same letters. The integrals between these limits 
are found to be only insignificantly smaller than the confidence levels of 68% (1 sigma), 95.4% 
(2 sigma), and 99.73% (3 sigma), what justifies the use of both methods, even for small counts. It 
is interesting to note that the confidence interval at the 68% confidence level, which is equal to 
3.41, though asymmetric around the measured n=3 count, is only insignificantly different from 
the 2√3=3.46 (symmetric) common wisdom interval. This difference gets bigger at higher 
confidence levels. It is seen the at higher confidence levels the confidence intervals soon become 
uselessly large and that their lower limits asymptotically approach zero.  
 

 
 

Fig. 1. a) The kdf K(N,n=3), as given by Eq.(3), and b) the lnK(N,n=3) function. In both figures 
 the limits of 1σ, 2σ and 3σ confidence intervals are marked. 
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2.b. At high count inverse Gaussian is a good approximation to Poissonian kdf 
 
Another important property of the kdf is that, as the Gauss distribution of counts n for a given 
average count N becomes better approximation to the Poisson as the average count increases, so 
does the inverse Gauss distribution, or the Gauss kdf for the average count N, as given by our 
Eq.(4): 
 

K(Nn) �
�

�
�
�

� −−=
N
nN

N 2
)(

exp
2

1 2

π
   (4) 

 
become better approximation of the inverse Poisson, or the Gamma function as given by our 
Eq.(3), as the recorded count n increases. To illustrate this point, in Fig.2 we present the two 
distributions for the observed count n=3 and n=20. In a way, this makes the approach we 
advocate here nicely consistent, and speaks in its favor. Fig.2b also reveals that at high counts 
both kdfs at low confidence levels become symmetric and normal-like.  
 

 
 
Fig. 2. Comparison of the Poisson kdf [Eq(3)], and Gauss kdf [Eq.(4)], for the observed count 

a) n=3, and b) n=20. The bigger the count, the difference between the two gets smaller, 
like the difference between the Poisson and Gauss distribution of counts for a given 
average count gets smaller with the increasing average count.   
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2.c. Predicting the next count 
 
The knowledge of the average count as represented by the kdf, which is the final result which we 
seek, may be used for another seemingly important purpose, which would further justify its 
meaning and name which we have suggested here. In accord with the main goal of all of science, 
which is to predict the future on the basis of our current knowledge of the past, we might be 
interested in predicting the next count k, after we have previously observed a single count n. Only 
if we knew the average count N exactly (which is the knowledge achieved only after an infinite 
number of samplings) would our prediction (or expectation) of the next count k be distributed by 
the Poisson distribution P(kN). However, after a single observed count n our knowledge of N is 
not sharp but is distributed as K(Nn) and a contribution of any  possible N to the probability of 
the occurrence of the next count k is P(kN)×K(Nn). The overall probability to obtain a given 
count k after count n has been observed is thus equal to:  
 

    p(kn) =  � ∞
0 P(kN)×K(Nn) dN.    (5) 

 
This function, which we shall name the "prediction distribution function" (another pdf!) can be 
found explicitly: 
 

      p(kn) )1(
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  (6) 

 
This pdf is properly normalized, its mean is n+1, and it favors higher values significantly more 
than the Poisson distribution. The difference between the Poisson distribution, which would be a 
valid prediction function if we knew for sure that the average count is N=5.0, and this pdf for the 
observed count n=5, is illustrated in Figure 3. Though this function is not of great practical use, 
and we shall here make no further mention of it, it is conceptually interesting as it demonstrates 
the full meaning of statistical determinism in counting experiments.   
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Fig.4. Comparison of the prediction distribution function for the next count k when the 
count n=5 has been previously observed, as defined by our Eq. (6), and the Poisson 
distribution, which is the prediction function for the count k when it is exactly known that 
the average count is N=5.0. 
 
 

 We believe that we have thus arrived at a heuristic proof that the two approaches are, at 
least in the case of elementary counting statistics, equivalent, assuming our interpretation of the 
frequentist likelihood function is adopted by the frequentists, and provided the Bayesians adopt 
the uniform prior as the only correct one, for any other prior will simply yield the wrong kdf.  
 
 

3. THE CASE OF A COUNT WITH BACKGROUND – the two-parameter problem 
 
 Now that we have, under the conditions stated above, hopefully agreed upon the 
equivalence of frequentist and Bayesian views in the simplest one-parameter case, we may in the 
same spirit proceed with the analysis of realistic cases of small number of counts, in the presence 
of background, what is a typical two-parameter problem most frequently met with in both the 
nuclear and particle physics.  
 
3.a. The algorithm 
 
 To this end we shall deal in some detail with the procedure which is usually pursued by 
the Bayesians for the analysis of weak spectral lines in gamma-ray spectra situated on the 
continuous constant background, which may, under our terms, be adopted by the frequentists as 
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well. The procedure is nicely presented by Sivia [11], and was recently used by Klapdor et. al. 
[12] to support their first ever hint of a positive result for the neutrinoless double beta decay. As 
we shall see it will turn out to be quite useful generally, for the definition of significance of 
arbitrary count in the presence of background which is known with arbitrary precision.  
 
 We assume that the spectral data consist of a certain number of channels xi (i=1,2,...,m) 
with counts ni which are distributed as  
 

P(ni|Ni) = !/)( i
Nn

i neN ii − ,    (7) 
 
with average values Ni which are in turn supposed to satisfy the equation  
 

Ni(A,B) = C{A exp[-(xi-x0)2/2w2] + B}.   (8) 
 
The position x0 and the width w of the Gaussian spectral line are supposed to be known in 
advance with negligible uncertainty, while the height of the line A (or its intensity) is the 
parameter of interest, and the height of the constant spectral background B is a nuisance 
parameter which must be determined only in order to find the value of A (the value of C is of no 
consequence here). This situation is common in high resolution gamma-ray spectroscopy, and 
has been as such in practically the same way analyzed in real life by Klapdor, ref.12. Assuming 
that the counts in the channels are independent, the whole set of data {ni} now has the probability 
to appear, or (Bayesian) likelihood, equal to the product of probabilities for individual channel 
counts:  
 

P[{ni}|Ni(A,B)]=∏∏∏∏i P[ni|Ni(A,B)].    (9) 
 
Now, considered as a function of unknown parameters A and B this is at the same time equal to 
what we have called a knowledge density function, or both to the frequentist likelihood function 
and the Bayesian posterior pdf obtained with a constant prior:  
 

   K(A,B|{ni})=P[{ni}|Ni(A,B)].    (10) 
 
According to the interpretation of both approaches, as agreed above, this function determines 
completely our knowledge about the parameters A and B in the light of the measured spectrum 
{ni}.  
 
 Following the tradition of both the frequentist maximum likelihood approach to 
parameter estimation, and the Bayesian analysis of the posterior pdf, we shall also analyze not the 
kdf itself, but its logarithm, which is in this case equal to:  
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        ln[K(A,B|{ni})] = ln P[{ni}|Ni(A,B)] = const + ����i {ni ln[Ni(A,B)]−Ni(A,B)}.  (11) 
 

As in the one-parameter case, our knowledge of the parameters is concentrated around the 
maximum of both the kdf and ln(kdf), and sharpness of both functions determines the sizes of the 
confidence intervals for the parameters. One important difference from the one-parameter case is 
now that, at a certain confidence level, possible values of the parameter necessarily become 
negative, or unphysical. The question is then only at what confidence level, CLmax, this takes 
place. We are then at maximum CLmax % convinced that our signal is non-zero. Thus, if the 1σ 
interval, or the confidence interval at the 68% confidence level, is the last one that does not 
include zero, we are only 68% convinced that the result is non-zero, and so on. The 5σ level, 
which is near our complete conviction that it contains the true value of the average count, and 
which is nowadays recommended for the results of extreme importance (like the Higgs), requires 
that the large confidence interval which is bound within the iso-lnK line s2/2=12.5 below the 
maximum, does not comprise zero. Some subtleties we shall discuss later on, in the examples. 
 
 The two-parameter problem is a convenient one for it can be solved graphically. Minding 
the accuracy of our statistical inferences at low statistics (or statistical errors of our statistical 
errors, which hardly justify more than a single significant figure in the quantification of our 
knowledge), the accuracy of the graphical method is quite appropriate. Insisting on higher 
accuracy would anyway be in a somewhat bad taste. The easiest way is to find numerically, and 
then inspect graphically, the values of lnK(A,B) for a sufficiently fine grid of A and B values 
around the maximum, so as to cover the wanted confidence interval. This is best illustrated by an 
example.  
 
  
3.b. Weak Gaussian spectral line on a low constant background  
 

We first analyze in some detail a typical germanium gamma-ray spectrum in the close 
surrounding of an expected spectral line. In the first numerical example the counts in the 
consecutive 11 channels are: 1,2,0,1,4,3,2,1,0,2,0. The Gaussian line of unit width, w=1, is 
expected in channel x0=6. The spectral background is low and the line is, if there is any, weak. 
Upon inspecting the numbers we do not expect the background to be higher than, say, 1, and the 
line to be higher than 3, what would be the anticipated coordinates (Amax,Bmax) of the maximum 
of lnK. Since the line is weak we are most probably interested in the maximum confidence level 
at which it may be considered existent, and this is why we would like to know the values of lnK 
for A=0, so we include zero in the range of values for A. On the other hand, we might want to 
know the confidence interval for the intensity at a certain confidence level, which is why we have 
to extend the range of values for A well past the maximum of lnK, perhaps up to 6 in this case. 
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Though we are not interested in the value of background B, we still have to determine the 
interval for its values, where we shall investigate the values of lnK. This is somewhat tricky 
because the two parameters, A and B, are in principle correlated, most probably in such a way 
that to the positive deviation of one parameter from its average there corresponds a negative 
deviation of the second one from its average (what is called anticorrelation). Correlation between 
the parameters is judged by the tilt of symmetry axes of the iso-lnK contours projected onto the 
A,B plane. It may thus happen, as we shall see, that the confidence limits at a given confidence 
level for A correspond to the values of B well away from its value at lnKmax. This is difficult to 
predict, and if this graphical method is adopted, one often has to work in a number of steps, until 
all wanted information is obtained. We shall take this interval somewhat wider that it might 
appear necessary, say from zero to 2. The steps of 0.1 in both parameters are sufficiently fine, 
and a small program will easily find the values of [A, B, lnK(A,B)] in such a grid.  
 
 If the resulting three columns are imported into ORIGIN, and converted to matrix form, 
one among the Plot3D routines will draw a contour plot of wanted iso-lnK lines projected onto 
the (A,B) plane. The result of this procedure for our example is presented in Fig.4.  
 

 
Fig.4. Analysis of the kdf for the spectrum 1,2,0,1,4,3,2,1,0,2,0, assuming a Gaussian line 
one channel wide in channel 6, and flat background elsewhere.  

 
The iso-lnK lines are drawn at 0.5 intervals, starting from lnKmax. The coordinates of the 
maximum of the kdf are: Amax≈2.8 and Bmax≈0.8. The limits of the 1σ and 2σ intervals are 
denoted in the figure, and it may be seen that they correspond to positions of vertical tangents 
(for background these are the horizontal tangents) to the lnKmax−0.5 and lnKmax−2 iso-lnK lines. 
The aforementioned effects of (anti)correlation between A and B may also now be inspected. We 
may thus at the 68%CL quote the result as 0.1

0.18.2A +
−≈ , or at the 95.4%CL as 0.3

4.28.2A +
−≈ , etc. 



 12

Alternatively, we may say, for instance, that we are 95.4% convinced that the height of the 
supposed line is somewhere in the interval from 0.5 to 6. Another possibility is to express the 
confidence level at which we are still convinced that there is a line at all. To find this confidence 
level we have to find the last iso-lnK level which lies completely in the region of positive A 
values, which is the one that touches the vertical axis. If we have determined the confidence level 
which corresponds to this iso-lnK line to be (CL)max, then the confidence level (expressed in %) 
at which we are still convinced that there is a line at all is (CL)max+[100−(CL)max]/2 (what is 
equivalent to integrating the kdf). In our case the iso-lnK line which touches the vertical axis is 
the one which is 2.35σ below lnKmax, so that (CL)max is 98%. We are thus 99% convinced that 
there is a line at all. Finally, at the 3σ level we may not claim the line any more, since the 
lnKmax−4.5 level has the left vertical tangent well into the region of negative A values.  
 
 We see that every positive result for the signal can always be interpreted in two basically 
different ways. First, it can be expressed as a two-sided confidence interval at a given confidence 
level (or, what is equivalent, as a definite value with definite errors, so as to encompass the same 
interval). Secondly, it can be expressed, always at the higher confidence level than in the first 
case, as a maximum level at which we are convinced that the result may be considered non-zero 
(what is sometimes called the one-sided interval). Which of the possibilities we shall use depends 
primarily on the value of the confidence level, (CL)max , at which the two ways of expressing the 
result start to differ. If the highest confidence level at which the two-sided confidence interval 
can be still stated is too low, smaller than one sigma for instance, then we shall rather state the 
maximum level at which the signal can still be considered non-zero.   
 
 When the maximum of the kdf occurs for the negative value of the signal, what we shall 
illustrate in the examples which follow, we can only state the maximum confidence level (which 
is always smaller than 50%) at which the signal can still be considered positive. 
 
3.c. “Single-point Gaussian line” on a low constant background 
 
 We now examine the transitional case between the spectral analysis, which we performed 
above, and the simple event counting case, which is of more interest in particle physics. We 
consider the same spectral situation as before, but with the width of the Gaussian line 
degenerated to a single channel (what is the infamous case of a "single-point Gaussian", which 
occurs at low dispersions). The width of such a "line" may be taken anything smaller than or 
equal to, say, w=0.1. If other channels contain only background, the problem is then equivalent to 
testing the hypothesis that this single count belongs to the background or not, what amounts to 
determination of the confidence level at which it may be considered a fluctuation of the 
background, or that at which it may not. Consider the following sequence of counts: 
0,1,3,0,2,7,1,2,0,2,2, and suppose that there is a "single-point Gaussian" in channel 6, where the 
count is 7. Same procedure as above now yields the result which is presented in Fig.5.  
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Fig.5. Analysis of the kdf for the spectrum 0,1,3,0,2,7,1,2,0,2,2 assuming a “single-point 
 Gaussian” line 0.1 channel wide in channel 6, and flat background elsewhere.  

  
 
 We see that our knowledge of average background now peaks around 1.3 and the height 
of the "line" therefore peaks around the remaining 5.7, and that this can be considered a "line" 
even at the 3σ confidence level, but not higher.  
 
 
3.d. Small signal+background count on a small background count  
 
 Next example will take us to the case of a simple counting problem. If we now let not 
only the line, but also the background to degenerate to a single channel, then we are left with two 
counts only (one of which is supposed to be background and the other signal+background), and 
the problem of finding out the significance of the difference between them. Our algorithm will, 
without any changes, provide us with the answer. Let the two counts be 3 and 6. Let us first 
suppose that background is 3 and background plus signal is 6. We have to remember that all the 
counts are Poissonian, so that we expect the kdf for background to be inverse Poisson, while that 
for the signal will be something different, but with the dispersion which is the sum of dispersions 
of both counts. The result of the procedure which is performed under these assumptions is 
presented in Fig.6.  
 



 14

 
 
Fig.6. Analysis of the kdf for the two counts only, 3 and 6, first of which is supposed to be 

Poissonian background, and second signal+background. The iso-lnK lines now differ 
by 0.1.   

 
 
 It is seen that the kdf behaves as expected. The signal may be considered significant at the 
level of 1σ only, what amounts to the statement that we are at maximum 68% convinced that 
count 6 belongs to a different population than count 3.  
 
 Next we invert the situation. We keep the same counts as in the previous example, but 
exchange their roles; we now suppose that predicted background is Poissonian 6 and that 
signal+background turned out in the experiment to be 3. Result of the analysis is presented in 
Fig.7. 
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Fig.7. Analysis of the kdf for counts 3 and 6, as above, but with the roles of the counts  
interchanged. 

 
 
 We see that the signal becomes positive at the confidence level around 70%, so that we 
may be about 30% convinced that the signal is still non-zero.  
 
 
3.e. Small signal+background count on a small “non-Poissonian” background count 
 
 Our algorithm is easily adapted to deal with the cases when background count in a given 
measurement time is in advance predicted with any given precision (is “non-Poissonian”), either 
from separate measurement of the duration different than that of the actual experiment which 
measures signal+background, or from an appropriate Monte Carlo simulation. Since in our 
algorithm only the average value of counts in the channels which are declared as background 
determines its properties, irrespective of the actual distribution of counts in these channels, we 
are entitled to structure the background in such a way so as to satisfy our needs. Refering to our 
example of subsection 3.c. this can be done in the following way.  
 
 If in the experiment which is supposed to measure signal+background the predicted 
background at the 68%CL is nB ± δB, and if δB = f √(nB) (with f≤1), then we construct the 
background so as to be distributed in η=1/f 2 = CINT(nB/δB

2) channels, which contain integer 
counts which all add up to CINT(ηnB), where CINT denotes operation of taking the closest 
integer of the expression in the parentheses (we have accepted a certain inconsistency here - a 
symmetric confidence interval at a given confidence level for the background estimate, instead of 
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an asymmetric one - but the difference is quite small at low CL, and absolute rigor is out of 
place). The way in which we shall distribute these counts is arbitrary. To illustrate how this 
works let us work out an example.  
 
 Suppose the predicted background at the 68%CL in a certain experiment is 3.2±0.5. If it 
was a Poissonian prediction its dispersion would have been 3.2, and half of the 1σ confidence 
interval would be √3.2=1.79, instead of 0.5 in our case. The confidence interval is thus by the 
factor 1/f=1.79/0.5=3.6 narrower than it would have been if the background were determined on 
the basis of the measurement of the same duration as that of the actual experiment. That means 
that the duration of the background measurement is η=1/f 2 = CINT(nB/δB

2)=13 times longer than 
that of the signal+background measurement, and that during that time CINT(ηnB)=41 
background counts must have been observed (or simulated). To construct the background with 
such properties for the purposes of our analysis we thus have to distribute 41 counts in 13 
channels, in an arbitrary way. Let us take this to be 12×3+5, or: 3,3,3,3,3,3,3,3,3,3,3,3,5.  If in the 
actual experiment 6 counts have been observed, which we potentially attribute to 
signal+background, we then have to analyze the following "spectrum": 
3,3,3,3,3,3,3,3,3,3,3,3,5,6, assuming the existence of a "single-point line" in channel 14, and 
considering all the rest as background. When we do this we obtain the result presented in Fig.8.  

 

 
Fig.8. Analysis of the kdf for the counting experiment in which the expected background at 

68%CL is 3.2(5), which is represented by the counts 3,3,3,3,3,3,3,3,3,3,3,3,5 in 
background channels, and the signal+background measured count is 6, which is 
represented by the count in a separate channel, where a single-point Gaussian line 0.1 
channels wide is supposed to exist. 
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 We see that the characteristics of the background are as required, and that increase of its 
accuracy over the Poissonian accuracy resulted in the increased confidence level at which the 
signal may be considered non-zero, as compared to our example in Fig. 6 (though perhaps not as 
great an increase as might have been expected).   
 
 
3.f. High signal+background and background counts  
 
 Finally, when the counts in the channels get bigger than twenty, or maybe even ten, both 
the count pdf and its inverse, the kdf, get close to normal, and it becomes irrelevant which 
algorithm one adopts. The results of our analysis then become equal to those of the standard least 
squares analysis, which in principle cannot be applied when the counts are Poissonian  (though, 
as evidenced by the discussion of our Fig.2b, at low confidence levels the LSF method, even at 
low counts, produces virtually the same results, at higher confidence levels, where the asymmetry 
of the distributions is more apparent, they start to differ significantly from those of the method 
applied here). To demonstrate this we apply our algorithm to the counting experiment where the 
expected background is Poissonian 10 and the signal+background count is 30. We expect the 
confidence interval for the signal at the 68%CL to be 2√(30+10) wide, and in Fig.9, where this 
situation is analyzed assuming the existence of the single-point line in the channel which 
contains signal+background, we see that it is indeed so.  
 

 
 

Fig.9. Analysis of the kdf for the two counts, 10 and 30, first of which is supposed to be 
Poissonian background, and second signal+background. The iso-lnK lines differ 
by 0.5.   
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 To conclude, we believe that the examples, which were chosen to be representative of 
elementary counting experiments in nuclear and particle physics, demonstrate that the 
significance of results from these experiments may be meaningfully assessed by always using one 
and the same algorithm, which we have here elaborated and, hopefully, justified.  
 
This work is partly supported by the Serbian Ministry of Science and Environment, under 
Projects No.1451 and No.1859. 
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